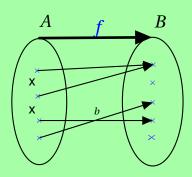
Chapitre 3

Limites et continuité

3.1 Rappel sur les fonctions

Soient A et B deux parties de \mathbb{R} . On appelle "fonction f définie de A vers B ($f: A \rightarrow B$)" une relation entre A et B qui à tout élément de A associe au plus un élément de B.

Diagramme



Remarque 4

- ★ Les éléments de A sont appelés les antécédents
- ★ Les éléments de B sont appelés les images

$$f: A \longrightarrow B$$

$$x \mapsto f(x)$$
 x: antécédents; $f(x)$: images

L'ensemble de définition d'une fonction f est l'ensemble des éléments de l'ensemble de départ qui admettent des images dans l'ensemble d'arrivée. Cet ensemble est noté D_f .

$$D_f = \{x \in A/f(x) \text{ existe }\}$$

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto \ln(1-x)$$
$$D_f =]-\infty; 1[$$

3.1.2 Une application

Une application est une fonction tel que son ensemble de définition représente son ensemble de départ.

$$f: \mathbb{R} - \{0; 1\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{2x+1}{x(x-1)} \text{ est une application car}$$

$$D_f = \mathbb{R} - \{0; 1\}$$

3.1.3 Propriété- Opérations arithmétiques sur les fonctions

Soient f et g deux fonction admettant respectivement D_f et D_g comme ensemble de définition.

- $\not\approx$ Les fonctions f+g ou f-g et $f\times g$ sont définie sur $D_f\cap D_g$
- * La fonction $\frac{f}{g}$ est définie sur $D_f \cap D_g$ avec $g(x) \neq 0$
- \star La composition $f \circ g$ est définie sur

$$D_{f \circ g} = \left\{ x \in D_g \text{ et } g(x) \in D_f, f \circ g(x) = f\left(g(x)\right) \right\}$$

3.1.4 Propriétés générales sur les fonctions

Soit $f: I \longrightarrow \mathbb{R}$ une application

* On dit que f est une fonction constante sur I si et seulement si $\forall x_1$ et $x_2 \in I$, $f(x_1) = f(x_2)$.

 $\not\approx$ On dit que f est une fonction croissante sur I si et seulement si $\forall x_1$ et $x_2 \in I$ tel que $x_1 < x_2 \rightarrow f(x_1) < f(x_2)$.

** On dit que f est une fonction décroissante sur I si et seulement si $\forall x_1$ et $x_2 \in I$ tel que $x_1 < x_2 \rightarrow f(x_1) \ge f(x_2)$.

* On dit que f est une fonction paire sur I si et seulement si $\forall x, -x \in I$ f(x) = f(-x).

La fonction

$$f: [0; +\infty[\longrightarrow \mathbb{R}]$$

 $x \longmapsto x^2 \text{ n'est pas paire sur } [0; +\infty[$

Par contre

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto x^2 \text{ est paire sur } \mathbb{R}$

Remarque 5

La courbe représentative d'une fonction paire est symétrique par rapport à l'axe des ordonnées.

<u>Domaine d'étude :</u> $[0; +\infty[\cap D_f \text{ ou }]-\infty; 0] \cap D_f.$

 \star f est une fonction impaire sur I si et seulement si $\forall x, -x \in I$ et on a : f(-x) = -f(x).

Remarque 6

La courbe représentative d'une fonction impaire est symétrique par rapport à l'origine du repère.

<u>Domaine d'étude :</u> $[0; +\infty[\cap D_f \text{ ou }]-\infty; 0] \cap D_f$.

La fonction $f(x) = \cos(x)$ est périodique de période $T = 2\pi$ sur \mathbb{R} . $g(x) = \tan(x)$ est périodique de période $T = \pi$ sur $\mathbb{R} - \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$

Remarque 7

Pour étudier une fonction périodique de période T, on prend comme domaine d'étude un intervalle d'amplitude T. Le reste la courbe, est obtenu par une translation $T\vec{i}$.

$$De = \left[-\frac{T}{2}; \frac{T}{2} \right] \cap D_f$$

f est une fonction lipschitzienne sur I si et seulement si $\forall x_1$ et $x_2 \in I$, $\exists k > 0$ tel que

$$|f(x_1) - f(x_2)| \le k |x_1 - x_2|$$

On utilise cette propriété pour prouver l'existence des solutions d'une équation différentielle.

Remarque 8

Lorsque 0 < k < 1, f est une fonction contractante.

3.2 Les limites

Soit $f: I \longrightarrow \mathbb{R}$, $x_0 \notin I$ et $l \in \mathbb{R}$. f admet pour limite l lorsque x tend vers x_0 si et seulement si les valeurs f(x) peuvent être rendues aussi proche de l que l'on veut en prenant des x suffisamment proche de x_0 . Ceci est équivalent à

$$\forall \varepsilon > 0; \ \exists \eta > 0 / \forall x \in I, |x - x_0| \le \eta \Rightarrow |f(x) - l| \le \varepsilon$$

C'est encore équivalent à

$$\lim_{x \to x_0} f(x) = l$$

La notation $x \rightarrow x_0$ représente le voisinage de x_0 .

3.2.1 Limite à gauche-Limite à droite

 $\not \approx$ On dit que f admet une limite l_1 a gauche de x_0 si et seulement si :

$$\forall \varepsilon > 0; \ \exists \eta > 0 / \forall x \in I, x_0 - \eta \le x \le x_0 \Rightarrow |f(x) - l| \le \varepsilon$$

Ce qui équivaut à

$$\lim_{x \to x_{0}} f(x) = \lim_{x \to x_{0}^{-}} f(x) = l_{1}, \quad l_{1} \in \mathbb{R}$$

* On dit que f admet une limite l_2 a droite de x_0 si et seulement si :

$$\forall \varepsilon > 0; \ \exists \eta > 0 / \forall x \in I, x_0 \le x \le x_0 + \eta \Rightarrow |f(x) - l| \le \varepsilon$$

Ce qui équivaut à

$$\lim_{x \to x_{0}} f(x) = \lim_{x \to x_{0}^{+}} f(x) = l_{2}, \quad l_{2} \in \mathbb{R}$$

* Pour que f admette une limite l en x_0 , il faut et il suffit que :

$$\lim_{x \to x_{0}} f(x) = \lim_{x \to x_{0}} f(x) = l$$

$$f(x) = \left(\frac{x^3 + |x| + x}{x}\right) \sin\left(\frac{1}{x}\right)$$

Etudiez la limites de f en 0.

Solution 5

$$\lim_{x \to 0_{<}} f(x) = \lim_{x \to 0_{<}} \left[\left(\frac{x^{3} + |x| + x}{x} \right) \sin \left(\frac{1}{x} \right) \right]$$

$$= \lim_{x \to 0_{<}} \left[\left(\frac{x^{3} - x + x}{x} \right) \sin \left(\frac{1}{x} \right) \right]$$

$$= \lim_{x \to 0_{<}} x^{2} \sin \left(\frac{1}{x} \right)$$

$$\lim_{x \to 0_{<}} f(x) = 0$$

On démontre aussi que $\lim_{x\to x_0>} f(x)$ n'existe pas.

3.2.2 Théorème d'encadrement

Soient f, g et h trois fonctions définies au voisinage de x_0 telles que : $f(x) \le g(x) \le h(x)$.

Si $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = l$ alors $\lim_{x \to x_0} g(x) = l$.

Calculez $\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right)$.

Solution 6

 $\forall x \in \mathbb{R}^*$,

$$-1 \le \sin\left(\frac{1}{x}\right) \le 1$$

$$-x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2$$
or
$$\lim_{x \to 0} (-x^2) = \lim_{x \to 0} x^2 = 0$$
Alors
$$\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0$$

 $\lim_{x\to x_0} f(x) = l \text{ \'equivaut, pour toute suite } (U_n)_{n\geq 0} \text{ d"\'el\'ement de } D_f \text{ telle que } \lim_{x\to +\infty} U_n = x_0 \text{ la suite } \left(f(U_n)\right) \text{ converge vers } l.$

Remarque 9

On utilise cette propriété pour montrer qu'une fonction n'admet pas de limites en un point x_0

Montrez que la fonction $f(x) = \cos\left(\frac{1}{x}\right)$ n'admet pas de limite en 0.

3.2.4 Quelques limites de référence

$$i_{1}) \forall \alpha > 0 \text{ et } \beta > 0; \not * \lim_{x \to 0} x^{\alpha} \ln(\beta x) = 0$$

$$\not * \lim_{x \to +\infty} \frac{\ln(\beta x)}{x^{\alpha}} = 0$$

$$\not * \lim_{x \to -\infty} x^{\alpha} e^{(\beta x)} = 0$$

$$\not * \lim_{x \to +\infty} \frac{x^{\alpha}}{e^{(\beta x)}} = 0$$

$$\not * \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\not * \lim_{x \to 0} \frac{\tan(x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

3.2.5 Formes indéterminés

$$*f + g \text{ pour } f \to +\infty \text{ et } g \to -\infty$$

 $*f \times g \text{ pour } f \to 0 \text{ et } g \to \pm \infty$

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to 0} e^{\ln\left((1+x)^{\frac{1}{x}}\right)}$$

$$= \lim_{x \to 0} e^{\frac{1}{x}\ln(1+x)}$$

$$= \lim_{x \to 0} e^{\frac{\ln(1+x)}{x}}$$

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \operatorname{car} \left\{ \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \right\}$$

3.2.6 Comparaison locale des fonctions

Soit x_0 , un point appartenant à $\overline{\mathbb{R}} = [-\infty; +\infty]$ et f et g deux fonctions définies dans un voisinage de x_0 .

 i_1) On dit que f est négligeable devant g au voisinage de x_0 si et seulement si, il existe une fonction k(x) tel que :

$$k(x) = \frac{f(x)}{g(x)}$$
 et $\lim_{x \to x_0} k(x) = 0$

on note

$$f(x) = o(g(x))$$

lorsque $x \to x_0$.

La fonction $f(x) = \ln(x)$ est négligeable devant $g(x) = \frac{1}{x}$ au voisinage de 0. On peut écrire que :

$$\ln(x) = \circ \left(\frac{1}{x}\right)$$

lorsque $x \rightarrow 0$.

 i_2) On dit que f est dominée par g au voisinage de x_0 si , il existe une fonction k(x) tel que :

$$k(x) = \frac{f(x)}{g(x)}$$
 et $k(x)$ est borné

on note

$$f(x) = \bigcap \left(g(x) \right)$$

lorsque $x \rightarrow x_0$.

La fonction $f(x) = x^2 \sin\left(\frac{1}{x}\right)$ est dominé par $g(x) = x^2$ au voisinage de $+\infty$. On peut écrire que :

$$x^2 \sin\left(\frac{1}{x}\right) = \mathcal{O}\left(x^2\right)$$

lorsque $x \to +\infty$.

 i_3) On dit que f est équivalente à g si et seulement si , il existe une fonction k(x) tel que :

$$k(x) = \frac{f(x)}{g(x)}$$
 et $\lim_{x \to x_0} k(x) = 1$

on note

$$f(x) \sim g(x)$$

lorsque $x \to x_0$.

- * Équivalence usuelles

 - $\sin(x) \sim x$; $\tan(x) \sim x$ $1 \cos(x) \sim \frac{x^2}{2}$; $\ln(1+x) \sim x$ $e^x 1 \sim x$; $(1+x)^\alpha 1 \sim \alpha x$ Tous au voisinage de 0.

Propriété

- Si $f_1(x) \sim f_2(x)$ et $g_1(x) \sim g_2(x)$ au voisinage de x_0 , alors :
 - $\not\approx f_1(x) \times g_1(x) \sim f_2(x) \times g_2(x)$ au voisinage de x_0
 - $* \frac{f_1(x)}{g_1(x)} \sim \frac{f_2(x)}{g_2(x)} \text{ au voisinage de } x_0$
- Si $\bar{f}(x) \sim g(x)$ au voisinage de x_0 et $\lim_{x \to x_0} g(x) = l$, alors : $\lim_{x \to x_0} f(x) = l$
- Si $f(x) \sim g(x)$ au voisinage de x_1 et $\lim_{x \to x_0} h(x) = x_1$, alors : $f(h(x)) \sim$ g(h(x)) au voisinage de x_0 .

Continuité 3.3

Soit $f: I \to \mathbb{R}$ une application et $x_0 \in I$. On dit que f est continue en x_0 si et seulement si :

 $\forall \varepsilon > 0 \quad \exists \delta > 0 \text{ tel que } \forall \quad \mathbf{x} \in [a; b]$

$$|x - x_0| \le \delta \Rightarrow |f(x) - f(x_0)| \le \varepsilon$$

On dit que f est continue en x_0 si et seulement si

$$\lim_{x \to x_0} f(x) = f(x_0)$$

3.3.1 Continuité à gauche et continuité à droite de x_0

• On dit que f est continue à gauche de x_0 si et seulement si :

$$\lim_{x \to x_0 <} f(x) = f(x_0)$$

• On dit que f est continue à droite de x_0 si et seulement si :

$$\lim_{x \to x_0 >} f(x) = f(x_0)$$

• Pour que f sit continue en x_0 il faut et il suffit que :

$$\lim_{x \to x_0 <} f(x) = \lim_{x \to x_0 >} f(x) = f(x_0)$$

Soit
$$f(x) = \begin{cases} \ln(x) \text{ et } x \in \left] 0; \frac{1}{2} \right[\\ 0 \text{ si } x = 0 \\ e^x \text{ si } x \in \left[\frac{1}{2}; +\infty \right[\right] \end{cases}$$

Solution 7

Calcul de la limite de f à gauche et à droite de $\frac{1}{2}$

$$\lim_{x \to \frac{1}{2} <} f(x) = \lim_{x \to \frac{1}{2} <} \ln(x)$$

$$\lim_{x \to \frac{1}{2} <} f(x) = -\ln(2)$$

•

$$\lim_{x \to \frac{1}{2} > } f(x) = \lim_{x \to \frac{1}{2} > } e^x$$

$$\lim_{x \to \frac{1}{2} > f(x) = \sqrt{e}$$

•
$$f\left(\frac{1}{2}\right) = \sqrt{e}$$

Conclusion

- $\lim_{x \to \frac{1}{2} <} f(x) \neq \sqrt{e}$ alors f est discontinue à gauche de $\frac{1}{2}$.
- $\lim_{x \to \frac{1}{2} > f(x) = f(\frac{1}{2}) = \sqrt{e}$ alors f est continue à droite de $\frac{1}{2}$.

3.3.2 Image d'un intervalle par une fonction continue

L'image d'un intervalle par une fonction continue est un intervalle de même nature que l'intervalle antécédent.

f([a;b]) = [m;M] où m et M réprésentent respectivement le minimum et le maximum de f sur [a;b].

Illustration :

3.3.3 Théorème des valeurs intermédiaires

Soit f une fonction définie de [a;b] vers \mathbb{R} et continue.

$$\forall \lambda \in [f(a); f(b)], \quad \exists \alpha \in]a; b[/f(\alpha) = \lambda.$$

Application : On utilise ce théorème pour prouver l'existence des solutions des équations non linéaires de la forme : f(x) = 0 sur [a; b].

• Si $f(a) \times f(b) < 0$ alors l'équation f(x) = 0 admet une solution dans [a;b]

3.3.4 Continuité uniforme

La notion de la continuité est une propriété plus forte que la continuité

On dit que f est uniformement continue sur [a;b] si et seulement si : $\forall \varepsilon > 0 \quad \exists \delta > 0$ tel que $\forall x_1$ et $x_2 \in [a;b]$

$$|x_1 - x_2| \le \delta \Rightarrow |f(x_1) - f(x_2)| \le \varepsilon$$

- ★ La fonction $f(x) = x^2$ n'est pas uniformément sur \mathbb{R} .
- * La fonction $f(x) = x^2$ est uniformément sur tout intervalle fermé borné [a;b].

Remarque 10

Toute fonction Lipschitzienne sur [a;b] est uniformément continue sur [a;b]

3.3.5 Continuité et fonction monotone

Soit f une fonction continue et strictement monotone sur [a;b]. f admet une fonction réciproque f^{-1} définie sur f([a;b])

Remarque 11

Les courbes représentatives de f et f^{-1} sont symétriques par rapport à la première bissectrice c'est-à-dire la droite d'équation y = x.

FDS-UL

Chapitre 4

Dérivabilité

On dit que f est dérivable en x_0 si et seulement si :

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 existe et est finie.

Si cette limite existe, elle se note $f'(x_0)$.

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

Remarque 12

★ En posant $h = x - x_0$, la dérivabilité en x_0 revient à :

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

* La dérivabilité de f en x_0 se traduit géométriquement dans un repère orthonormé par l'existence d'une tangente non parallèles à l'axe des ordonnées.

Cette tangente (T) a pour équation :

$$(T): y = f'(x_0)(x - x_0) + f(x_0)$$

* Lorsque $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \pm \infty$, la fonction f n'est pas dérivable en x_0 mais elle admet une demi-tangente verticale orientée vers le haut s'il s'agit de $+\infty$ et vers le bas dans le cas contraire.

$$f(x) = \sqrt{x}$$

$$D_f = [0; +\infty[$$

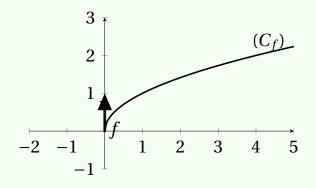
$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sqrt{x}}{x}$$

$$= \lim_{x \to 0} (x)^{-\frac{1}{2}}$$

$$= \lim_{x \to 0} \frac{1}{\sqrt{x}}$$

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = +\infty$$

Ainsi f n'est pas dérivable en 0 mais admet en 0 une demi-tangente verticale orientée vers le haut.



4.1 Dérivabilité à gauche et à droite

* On dit que f est dérivable à gauche de x_0 si et seulement si :

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$
 existe et est finie.

Si cette limite existe, elle se note $f_g^{'}(x_0)$.

* On dit que f est dérivable à droite de x_0 si et seulement si :

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$
 existe et est finie.

Si cette limite existe, elle se note $f_d^{'}(x_0)$.

* Pour que f soit dérivable en x_0 , il faut et il suffit que

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

Opération sur les dérivabilités 4.2

4.3 Dérivabilité et continuité

 $\star f$ est dérivable sur I si et seulement si f est dérivable en tout point de I.

* Si f est dérivable en un point x_0 alors f est continue en ce point mais la réciproque n'est pas toujours vraie.

Dérivabilité et fonction réciproque 4.4

Soit $f: I \to \mathbb{R}$ une fonction dérivables sur I, strictement monotone sur *I* telle que : $\forall x \in I$; $f'(x) \neq 0$

f réalise alors une bijection réciproque notée f^{-1} . f^{-1} est définie sur f(I).

$$f^{-1}: f(I) \to I, \quad \forall x \in I, \quad (f^{-1})'(f(x)) = \frac{1}{f'(x)}$$

En effet $f^{-1} \circ f(x) = x$.

 $[f^{-1}(f(x))]' = f'(x) \times (f^{-1})'(f(x))$ on a donc:

$$f'(x) \times (f^{-1})'(f(x)) = 1$$

$$\Rightarrow (f^{-1})'(f(x)) = \frac{1}{f'(x)}$$

$$\Rightarrow (f^{-1})'(f(x)) = \frac{1}{f'(x)}$$

Soit

$$f: \left[\frac{\pi}{2}; \pi\right[\longrightarrow \mathbb{R}$$
$$x \longmapsto \frac{1}{\sin(x)}$$

1. Montrer que f admet une fonction réciproque f^{-1} , dont on dé-

2. Donnez le domaine de dérivabilité de f^{-1} et calculer $\left(f^{-1}\right)'$

4.5 Dérivées successives

Définition 8

- * Si f' est à son tour dérivable, on appelle fonction dérivée seconde de f', la dérivée de f'. On la note f''.
- * La fonction dérivée d'ordre n $(n \ge 1)$ notée : $f^{(n)}$ est la dérivée de la fonction dérivée d'ordre (n-1).

$$f^{(n)} = \left(f^{(n-1)}\right)'$$

$$f^{(3)} = (f^{(2)})'$$

Exemple 32

Remarque 13

$$f^{(0)} = f$$

* Fonction de classe $C^n(I)$.

Une fonction f est de classe C^n sur I (on note $C^n(I)$) si et seulement si elle est n fois dérivable sur I. C'est à dire que les dérivées $f'; f^n; \dots; f^{(n)}$ existent et la fonction dérivée d'ordre n est continue $(f^{(n)}$ est continue)

 \star Fonction de classe $C^{\infty}(I)$.

Une fonction f est de classe C^{∞} si elle est indéfiniment dérivable sur I.

- $f(x) = e^x$ est de classe C^{∞} sur \mathbb{R} .
- $g(x) = \ln(x)$ est de classe C^{∞} sur]0; $+\infty$ [.

* Formule de LEIBNIZ

Cette formule permet de généraliser la dérivée du produit de deux fonctions jusqu'à l'ordre *n*.

Si f et g admettent des dérivées successivement jusqu'à l'ordre n, alors le produit $f \times g$ est dérivable jusqu'à l'ordre n. On a :

$$(f \times g)^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)} g^{(n-k)}.$$

$$C_n^k = \frac{n!}{k!(n-k)!}$$

Calculez la dérivée d'ordre n de la fonction : $f(x) = (x^2 - 2x + 2)(\sin(x))$

Théorème de Rolle-Théorème des accroissement 4.6 finis et inégalité des accroissements finis

Théorème 1: Théorème de Rolle

Soit f une fonction dérivable sur I = [a, b] telle que f(a) = f(b). $(a \neq b)$; $\exists \alpha \in f'(\alpha) = 0.$

Théorème 2: Théorème des accroissement finis

Soit f une fonction dérivable sur I, a et b deux éléments de I tel que a < b.

$$\exists \alpha \in I = [a; b] \text{ tel que} : f'(\alpha) = \frac{f(b) - f(a)}{b - a}$$

La droite passant par f(a) est parallèle à (MM') a pour coefficient directeur $f'(\alpha)$.

(MM') a pour coefficient directeur $\frac{f(b)-f(a)}{b}$

Théorème 3: Inéglité des accroissements finis

Soit f une fonction dérivable sur I tel que $\exists k > 0 / \forall x \in I, |f'(x)| \le k$ on a :

$$\forall x_1 \text{ et } x_2, \text{ deux \'el\'ements de } I.$$
 $\frac{|f(x_1) - f(x_2)|}{|x_1 - x_2|} \le k \text{ ou } |f(x_1) - f(x_2)| \le k |x_1 - x_2|$

4.7 Extremum

Théorème 4

* On dit que f admet un minimum local en x_0 si et seulement si $\forall x$ appartenant au voisinage de x_0 ; $(x \to x_0 \text{ ou } x \in]x_0 - \varepsilon; x_0 + \varepsilon[\text{ où } \varepsilon \text{ est un infinitésimal})$, on a :

$$f(x) \ge f(x_0)$$

* On dit que f admet un maximum local en x_1 si et seulement si : $\forall x$ appartenant au voisinage de x_1 , on a :

$$f(x) \le f(x_1)$$

Un extremum est soit un minimum ou soit un maximum

* Condition nécessaire :

Si f admet un extremum en x_0 alors $f'(x_0) = 0$.

4.8 variation d'une fonction

f est croissante sur I si et seulement si $f^{'}(x) \ge 0$, $\forall x \in I$. f est décroissante sur I si et seulement si $f^{'}(x) \le 0$, $\forall x \in I$.

4.9 Application : Calcul de limite

On utilise cette règle pour calculer la limite des fonctions se mettant sous la forme : $\frac{f(x)}{g(x)}$.

Règle de l'hopital

Si
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0 \quad ou$$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} (x) = \infty \quad alors$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$